Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
نویسنده
چکیده
Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated. In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C. In Paper B, an explicit finite element model of the paperboard deepdrawing process was developed. An orthotropic material model with inplane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process. In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.
منابع مشابه
FINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS
In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...
متن کاملFinite element comparison of single, bi-layered and three-layered tube hydroforming processes
In this paper, single, bi-layered and three-layered tube hydroforming processes were numerically simulated using the finite element method. It was found that the final bulges heights resulted from the models were in good agreement with the experimental results. Three types of modeling were kept with the same geometry, tube material and process parameters to be compared between the obtained hydr...
متن کاملDetermination of Buckling Limit of Strain in Cold Roll Forming through Finite Element Analysis
In this study, Buckling Limit of Strain (B.L.S.) is introduced as one of the most important limiting factors in cold roll forming process. B.L.S. is calculated by the finite element procedure. Then for two particular processes with existing analysis and experimental results, B.L.S. has been determined and evaluated. LUSAS 12.3 is used for finite element analysis. The results show that when buck...
متن کاملOptimization of the strain distribution in the roll forming process using the desirability function and finite element methods
Defects of the roll forming process are affected by amount and situation of the strains distribution. The effect of the process parameters on the strain distribution in the round cross section roll forming process has been studied. Finite element and response surface method have been used for process modelling. Then desirability functions approach and overlaid counter plots have been employed f...
متن کاملFinite element simulation of two-point incremental forming of free-form parts
Two-point incremental forming method is considered a modern technique for manufacturing shell parts. The presence of bottom punch during the process makes this technique far more complex than its conventional counterpart i.e. single-point incremental forming method. Thus, the numerical simulation of this method is an essential task, which leads to the reduction of trial/error costs, predicts th...
متن کامل